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Heavy metal ion pollution poses severe risks for human health Scheme 1
and the environment. Mercury contamination is widespread and
occurs through a variety of natural and anthropogenic sources NH,

\
including oceanic and volcanic emissibgpld mining? solid waste K.
. . ; . . NN N
incineration, and the combustion of fossil fuél®nce introduced S J’

2 rs s

into the marine environment, bacteria convert inorganic mercury H® NH

into methylmercury, which enters the food chain and accumulates "© O ° ‘ 0 Ho O ° ‘ °

in higher organisms, especially in large edible fish? Methyl- 4 O moac 7 cl

mercury is neurotoxic and has been implicated as a cause of prenatal O COM ) BCE, NaB(OAC)KH, t O coaA
1 ms1

brain damagé; 1° various cognitive and motion disordéést2and
Minamata diseas¥.

Our increased understanding of the deleterious effects of mercury
exposure has sparked interest in the development of new tools forallows efficient PET quenching at neutral pH. Upon disruption of
detecting Hg(ll) in the environment. One major challenge involves this quenching pathway by Hg(ll) coordination, the emission max-
creating Hg(ll) sensors that function in water and are highly imum red-shifts slightly to 528 nm and the quantum yield increases
selective for Hg(ll) against a background of competing analytes. ~2.75-fold to 0.11. The absorption spectrum exhibits a blue shift
Small synthetic molecules offer one approach to such probes. Tofrom 505 nm € = 61 300 M1 cm™1) to 501 nm € = 73 200 M!
date, a number of small-molecule Hg(ll) detection methods have cm™) upon Hg(ll) binding, resulting in a-3.3-fold increase in
been examined and include colorimetric strategfte¥,fluoroiono- brightness. A~5-fold increase in integrated emission is observed
phorest®27 and a dithioamide-functionalized lipid bilay&Most upon addition of Hg(ll) (Figure 1). The magnitude of this response
of these systems have limitations, which include interference from depends on the chloride ion concentration (Figure S2, Supporting
other metal ions, delayed response to Hg(ll), and/or a lack of water Information). Metal-binding titrations indicate that MS1 forms a
solubility, requiring the use of organic or aqueous organic solvent 1:1 complex with Hg(Il) in solution, which is responsible for the
mixtures. Although a fluorescent probe based on the indoaniline fluorescence enhancement, with ansg&€ of 410 nM.
chromophore exhibiting selectivity for Hg(ll) in water was recently The fluorescence response of MS1 to various cations and its
described® Hg(ll) binding results in a decrease of quantum yield selectivity for Hg(ll) are illustrated in Figure 2. The Hg(ll) response
(¢) and brightnessdg). of MS1 is unaffected in a background of environmentally rele¥ant

Here, we report the synthesis and metal-binding properties of alkali and alkaline earth metals including Li(l), Na(l), Rb(l),
MS1 (Mercury Sensor 1), a water-soluble, turn-on fluorescein-based Mg(ll), Ca(ll), Sr(ll), and Ba(ll). The Group 12 metals Zn(ll) and
sensor that exhibits high selectivity and sensitivity for Hg(ll). We Cd(ll), in addition to Cr(lll) and Pb(ll), do not inhibit the
selected fluorescein as the reporting group due to its superior fluorescence response of MS1 to Hg(ll). Of the first-row transition
brightness ¢ ~ 1, highe¢) and water solubility. Since Hg(ll) ion metal ions considered, only Cu(ll) interferes with the Hg(Il)-induced
has a high affinity for soft donors such as sulfur, we incorporated

a 3,9-dithia-6-azaundecane mo#étinto an aniline-derived fluo- 30
rescein-based ligand framework previously developed in our
laboratory2® N-(2-Aminobenzyl)-3,9-dithia-6-azaundecai2g \as >3
prepared in two steps starting from 3,9-dithia-6-azaundecane and 2
commercially available 2-nitrobenzyl bromide. Condensatiori-of 7 E 20
chloro-4-fluoresceincarboxaldehydd)g! with 2 in EtOAc, fol- 8 151 +Hg(ll)
lowed by reduction of the resulting imine using NaB(O#¢)in §
1,2-dichloroethane and purification on silica gel (50:1 CiClI 3 10l
MeOH), afforded MS1 as a magenta solid (Schemes 1 and S1, S
Supporting Information). o5t
At pH 7 and 100 mM ionic strength (50 mM PIPES buffer, 100

i 0 L I ! L
mM KF:_I), and in _the presence qf EDTA to scavenge any 450 500 520 540 560 580 600 620
adventitious metal ions, MS1 exhibits an emission maximum at Wavelength (nm)
524 nm and a quantum yield of 0.04. The low quantum yield of B '
the unbound sensor results from photoinduced electron tramsfer’::_-‘{“?fe l'lh ggjorﬁﬂs‘;‘;g%esrelsggnsa‘iéﬁlftfo ad[ﬁllltsl(;.iof HAQ/II('RI!” water at
. . .. . p witl m s m uffer. uM. Aliquots
(PET) .q.uenc.hlng of the f'uor,esc?'“ emission by the lone pair of of 0.1 and 1 mM HgGlwere added to yield final Hg(Il) concentrations of
the aniline nitrogen ator#. This nitrogen atom has akp of 7.1 0,0.1,0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.3, 1.5, arld Excitation
(Figure S1), which indicates that the deprotonation equilibrium was at 500 nm.
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Figure 2. (a) Fluorescence response of MS1 to various cations in water at (10)

pH 7 (50 mM PIPES, 100 mM KCI buffer). The response is normalized
with respect to the free dyé-§). The bars represent the emission of MS1
in the presence of 67 equiv the cation of interest: 1, Li(l); 2, Na(l); 3,
Rb(l); 4, Mg(ll); 5, Ca(ll); 6, Sr(ll); 7, Ba(ll); 8, Cr(lll); 9, Mn(ll); 10,
Fe(ll); 11, Co(ll); 12, Ni(l1); 13, Cu(ll); 14, Zn(l1); 15, Cd(l1); 16, Hg(l1);
17, Pb(ll). (b) The selectivity of MS1 for Hg(ll) in the presence of other
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Supporting Information Available: Figures S1 and S2, Scheme
S1, and synthetic and experimental details (PDF). This material is
available free of charge via the Internet at http://pubs.acs.org.
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